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In this report, we analyzed a cascaded coding scheme for a random error channel with 

a bit-error rat.e t .  In this scheme, the inner code C1 is an (nl ,rnlP) binary linear block 

code which is designed for simultaneous error correction and detection. The outer code 

C2 is a linear block code with symbols from the Galois field G'F(2e) which is designed 

for correcting both symbol errors and erasures, and is interleaved with a degree ml. A 

procedure for computing the probability of a correct decoding is presented and an upper 

bound on the probability of a decoding error is derived. The bound provides much better 

results than our previous bound [l] for a cascaded coding scheme with an interleaved outer 

code. Example schemes wit,h inner codes ranging from high rates to very low rates are 

evaluated. Several schemes provide extremely high reliability even for very high bit-error 

rates say IO-' to 
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1. Int,roduction 

111 this paper we investigate a coding schenle for error control for a random error 

channel wi th  bit-error rate E .  The schenie is achieved by cascading two linear block codes, 

called the inner and outer codes. The inner code, denoted C1, is a binary (n1,rnll) code 

wi th  minimum distance dl which is designed to correct t l  or fewer errors and simultaneously 

detect X I ( X 1  2 t l )  or fewer errors where tl + A 1  + 1 5 dl [2]. The outer code is an (n2, kz) 

code with symbols from the Galois field G'F(2e)  and minimum distance d2. Each code 

symbol of the outer code is represented by a binary P-tuple (called a l-bit byte) based on 

a certain basis of G F ( 2 e ) .  The outer code is interleaved with a degree (or depth) ml. 

The encoding is performed in two stages as shown in Figure 1. First a message of k2l 

binary information digits is divided into k2 P-bit bytes. Each !-bit byte is regarded as a 

symbol in GF(2 ' ) .  These k2 bytes are encoded according to the outer code Cz to form an 

n2-byte codeword in C2. This outer codeword is then temporarily stored in a buffer as a 

row in an array. After rnl outer codewords have been formed, the buffer stores a ml x n2 

array of code symbols as shown in Figure 2, which is called a segment-array. Each row of 

a segment-array is called a section. Each column of a segment-array consists of ml l-bit 

bytes (or rnll bits), and is called a segment. - There are data segments and 722 - IC2 panty 

segments. At the second stage of encoding, each segment of a segment-array is encoded 

according to  the inner code C1 to form an n,-bit codeword, which is called a frame. The 

n2 frames corresponding to the n2 segments of a segment-array form a code block. The 

two-dimensional format of a code block is shown in Figure 3. A code block is transmitted 

column by column (or frame by frame). I n  fact each frame is transmitted as soon as it has 

been formed. Note that the outer code is interleaved with a degree (or depth) ml. 

The decoding for the proposed scheme also consists of two stages, the inner and outer 

decodings. When a frame in a code block is received, its syndrome is computed based 

on the inner code C1. If the syndrome corresponds to an error pattern E of t l  or fewer 

errors, error corredion is performed by adding C to t,he received frame. The n1 - IC1 parity 

bits are reinoved from the decoded frame? and the decoded ml-byte segment is dored 

3 



as a column in a receiver buffer for the second stage of decoding. Note that a decoded 

segnient is error-free, if the number of transmission errors in a received frame is 1 1  or less. 

If the number of transmission errors in a received frame is more than X I ,  the errors may 

result in a syndrome which corresponds to a correctable error pattern with tl or fewer 

errors. In this case, the decoding will be successful, but the decoded segment contains 

undetected errors. If an uncorrectable error pattern is detected in a received frame, then 

the erroneous segment is declared to be erased. We call such a segment an erased segment. 

An erased segment is not necessarily being erased from the received buffer, it is simply 

ignored during the second stage of decoding (the outer code decoding). After 722 frames of 

a received code block have been processed, the decoder buffer contains a ml x 722 decoded 

segment-array. Each column of this decoded segment-array is either a decoded segment 

or an erased segment. A decoded segment may contain symbol (or byt,e) errors which are 

distributed among the rnl sections, at most one synibol error in each section. An erased 

seginent creates rnl symbol erasures, one in each section. Therefore, each section in the 

decoded segment-array may contain symbol errors and erasures. Now the decoder starts 

the second stage of decoding, each section is decoded based on the outer code Cz. The 

outer code is designed to correct both symbol errors and erasures. Maximum distance- 

separable codes (or Reed-Solomon codes) with symbols from GF(2')  are most effective for 

this purpose. 

Let. i be the number of erased segments in a decoded segment-array. If i is greater than 

a certain pre-designed erasure threshold Tes(Tes 5 d2 - l),  the outer code decoder stops 

the decocting process and declares an erasure (or raises a flag) for the entire segment-array. 

Otherwise the outer code decoder starts the error-correction operation on each of the ml 

sections. Let, t 2  be the designed error-correction capability of the outer code C2 with 

1 2  5 (d2 - 1 - T e s ) / 2 .  

If the syndrome of a section in the decoded segment-array corresponds to an error pattern 

of i erasures and f 2  or fewer symbol errors, error correction is performed. The values of 

the erased symbols and the values and locations of symbol errors are determined based 

on a certain algorithm. If more than f 2  synibol errors are detected, the receiver stops the 
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decoding process and declares an erasure (or  raises a flag) for the entire segment-array. If 

all the nzl sections of a segment-array are successfully decoded: then the IC2 decoded data 

segments are accepted by the receiver and delivered to the user in proper order. 

When a received block is det,ect,ed in errors and can not be successfully decoded, the 

block is erased from the receiver buffer and a retransmission for that block is requested. 

However, if retransmission is either not possible or not practical and no block is allowed 

to be discarded, then the erroneous block with all the parity symbols removed is accepted 

by the user with alarm. 

In the next t,hree sections, the error performance of the proposed scheme is analyzed 

and an upper bound on the probability of a block decoding error is derived. In Section 5 ,  

various exaniyle schemes are considered and their error probabilities are evaluated. The 

inner codes being used in these example scheme range from high rates to  very low rates. 

High rate inner codes are suitable for near-earth satellite conimunications for large file 

transfer. Low rate inner codes such as biorthogonal codes or the (24,12) Golay code are 

suitable for low data rate deep space comniunications. All the example schemes provide 

extremely high reliabilty even for very high bit-error rates, e.g., 10-1 to 

2. 2 

For 1 <_ u 5 m,l and a in G F ( 2 e ) ,  let p , , (u ,a )  be the joint probability that a segment 

is not. erased and the a-th symbol of the segment contains an error whose value is a. 

Clearly, if cr = 0, the u-th symbol is error-free. The probability p,(u,cr) can be computed 

if we know t,he detail weight distribution of the inner code C1. A procedure for computing 

p , (  1 1 ,  a )  is given in Appendix-I. 

Let. PC‘”(.u), and Pe(:)(u) be defined as follows: 
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(1) Clearly, P, ( u )  is siiiiply the probability that a segnient is not erased and its u - th  

symbol is error-free; and Per ( u )  is the probability that a segment is not erased and its 

u-th symbol is erroneous. Let Pi:) be the probability that a segment is being erased. Then 

(1) 

(1) Once PJ1’(u), Per ( u )  and Pi:’ are known we can compute the probabilities of a correct 

decoding and an incorrect decoding for the u-th section of a segment-array. This is done 

in t,he next. sect.ion. 

3. Probabilities  related^ 

. 

1 5 5 7ii 1, k t  P,( u ), P,, (.) acd P e T ( Z  b e  ?he prnbabilities nf a mrrec? deccdiIi= 0 7  

aii erasure and an incorrect decoding for the u-th section of a segment. -array. Then 

and Pc(u)  is given by 

In the following, we will derive an upper bound on the error probability P e r ( u )  for decoding 

the wt,h section of a segment-array. 

Let us number the segments in a segment-array from 1 to 722. Suppose the number 

of erased segments after the inner code decoding is T,, or less. Let E,  be the set of the 

erased segment numbers. For f 4 E,, let E ~ ( u )  be the error symbol at the u-th synibol 

position of the f-th decoded segment. Note that e r ( u )  is the symbol error at the f-th 

symbol position of the u-th section of a decoded segment-array. Suppose the u-th sectmion 

of a segment-array is decoded incorrectly. Then the u-th section is decoded into an outer 

codeword e, + c, where cC is the actual transmitted outer codeword and V is the nonzero 

outer codeword induced by t,he outer code decoding. Let, u ~ f  be the f- th  symbol of V .  

Clearly if v ~ f  # 0, there is an error at the f - t h  symbol position of the decoded word e, + e. 

Define the following sets associated to V .  

n W(G)={f : u j  # 0 and f E s } ,  
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When a section is decoded based on the outer code 6 ' 2 ,  only f 2  or fewer symbol errors and 

IH(6)I + IW(@)l - IJ(c)I 5 t 2  

where IM denot.es t,he number of eleiiient,~ in set M .  

Forgiven 1 5 u 5 r n l , E d ' ~ , E ,  C_ { 1 7 2 , - . . , n 2 } , H  C (1 

Te, or fewer symbol erasures are corrected. Hence, the following inequality holds: 

- . . , n 2 } a n d J  2 (1 2 

such that, H is disjoint from E ,  and W ( @ ) , J  C W ( @ )  and \HI + lW(zt)\ - I J /  5 f2, let 

be the probability of the occurrence of an error pattern induced by the inner code decoding 

for which H ( 5 )  = H and J ( 6 )  = J .  Then 

f.J fcW( 0 ) - J  

where i = /E,I,u, = IW(6)l and h = / H I .  

Let W be a subset of.{l, 2, - - e ,  n2} - E ,  - H such that, W 2 J, d2 - i 5 IW 

h + IWI - j 5 1 2 .  Let G2( W )  be defined as the following subset of codewords in (72: 

and 

Note that, for ' u E C ~ ( W ) ,  W ( 6 )  = W. Hence w = lW(C)l = W- 

Next we want tlo estiiiiate the following s u m :  



Since i 5 T,,, it, follows from (1) that. 

Since d, 5 ti' + i and h + UT - j 5 t 2 ,  we have that, 

Let, J' be a subset. of J such that, 

For ally ajcC;F( 2 e )  - { 0 }  with f c J '  consider two different codewords V = (01, 02, - e ,  v n 2 )  

and C' = ( v i ,  1 1 1 ,  - .  . , v ~ ~ )  in C,(W)  such that vf = v; = a f  for f c J ' .  Since the weight of 

- ij' is at least, d2, we have that 

vf # v>, for few U E,  - J'. 

It follows from Schwarz's inequality that 

2;-2 c 
where y is a primitive element of GF(2') .  Therefore, 

Thus we have that. 
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Let P ( u , i .  i ~ , h , j )  denote the right-hand side of (19). Since P,,(u) is the sum of 

7 d 
ikCJ( M') 

Pe(tt? E , , + , H , J )  taken over all possible E,, UT, H and J ,  we have t,hat 

4. Probabi1it)ies Related to the Decoding of a Code Block 

Let Pc be the probabiiity oi a correct decoding of the ml sections in a segment- 

array after the inner decoding. Clearly P, is the probability of a correct block decoding. 

denoted the probability that a For a binary nzl-tuple ( a1 , a2 , . - - , uml ) ,  let Pe,a, ,..., 

segment during the inner code decoding is not erased and the u-th symbol of the decoded 

is 

given in Appendix-11. For a positive integer n and integers j h  with 1 5 h 5 ml such that 

0 5 j h  5 n, let Pe,J1,J2 ,..., Jm,(n) be defined by 

( 1 )  

segment is error-free if and only if a,  = 0. A procedure for computing Pe,al,...,a,l (1 )  

r 1 n  

n n n 

Then P, is given by 

It is feasible t,o compute P, for small m l ,  f2 and relatively small min{kl,nl - kl}. 

Note that an incorrect block decoding occurs if one or more of the rnl interleaved 

sections in a segiiient,-array are decoded incorrectly. Hence the probability of an incorrect 
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block decoding, denoted PeT, is bounded above by 

(23) 
u= 1 

It, follows from (20)  and (23) that. we have the following bound on Pep: 
n 2 - i  

U’ 
i = Q  

min<t? .n?- i -wl  . 1,. . m. 
I - .  n 2 - z - w )  2 ( 1 ; )  

p (  u., i, w, h, j). (24) c ’ (  h 

Let Pes denot,e the probability of a block erasure (decoding failure). Then 

From (22) and ( 2 5 ) ,  we can compute 

.5. Example Schemes 

In this section, fifteen example schemes are considered and their error probabilities 

are evaluated. In these example schemes, the inner codes range from high rates to very 

low rates, and the outer codes are Reed-Solomon (RS) (or shortened RS)  codes. The 

inner codes are listed in Table 1 in descending order of the rates. The first five inner 

codes, Cl( 1) to C1(5) are shortened distance-4 Hainiiiing codes. The next three codes, 

C1(6)  to C1(S) are obtained by shortening the even subcodes of priiiiitive BCH codes of 

length 63. The sixth and seventh codes, Cri(6) and C!, (7) ,  can be decoded with a table 

look-up decoding. The eighth code Ctl(8) is majority-logic decodabe in two steps [2], and 

its decoder can be implemented easily. Cl(9) is a quadruple-error correcting Goppa code. 

The tenth code is an extended primitive BCH code. In fact, it is also a Reed-Muller code 

and is majority-logic decodabe. C1 (11) is the extended (24’12) Golay code which is widely 

used for satellite and deep space comniunications. CI(12), Cl(14) and Cl(15) are low- 

rate biorthogonal codes (or first-order Reed-Muller codes). C1( 13) is a quadruple-error 

correcting one-st ep majority-lbgic decodabe code [2]. 
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The parameters of the outer codes are given in Tables 2, 3 and 4. The first 10 example 

schemes and the twelveth example scheme use the same outer code which is the NASA 

standard (255, 223) Reed-Solomon code with symbols from GF(  28 ) and minimum distance 

33. However, various erasure and error-correcting threholds are used. Consider the third 

example scheme (third row of Table 2) .  The outer code is designed for correcting 22 or 

fewer symbol erasures and two or fewer symbol errors. The inner code is Cl(3). The total 

code rate for this scheme is 0.744. The rates of example schemes shown in Table 3 are 

less than 0.6 and greater than 0.4, and example schemes with lower rates are shown in 

Table 4. Consider the fifteenth example scheme (the third row of Table 4).  The inner 

code C'l(14) is the (16,5) biorthogonal code which is designed to correct three or fewer 

bit-errors. The outer code is the (31,15) Reed-Solomon code with symbols from G'F(25) 

and minimum distance 17  which is designed for correcting seven or fewer erasures and two 

or fewer symbol errors. The code rate of this example scheme is 0.151. Let P e p  denote 

the upper bound on the error probability given by the right-hand side of (24).  The bound 

Per for each of the example schemes is computed for various high bit-error rates between 

0.5 x lo-' to 3 x 10-l .  We see that all the example schemes provide extremely high 

reliability. For example, consider the 3rd example scheme (see Table 2) .  For bit-error 

rate E = 0.5 x the scheme has an error probability upper bounded by 3.82 x lovz4!  

The probability of a decoding failure (or erasure) is 2.35 x i.e., there are less than 

3 erasures in a thousand transmitted code blocks. If the 5-th example scheme (see Table 

2) is used, the error probability is less than 1.72 x for bit-error rate E = 0.5 x lo-', 

and the decoding failure is 1.50 x The high-rate example schemes are suitable for 

high date rate near earth satellite communications for large file transfer. 

The low-rate example schemes are suitable for low-data rate deep space communica- 

t.ions. For example, consider the 16-th example scheme (see Table 4). For bit-error rate 

as high as 

block erasure is 1.87 x 

blocks). For bit-error rate E = 0.5 x 

and the probability of a block erasure is 3.76 x 

the error probability is less than 2.23 x and the probability of a 

(less than 2 erasures in one hundred niillion transmitted code 

the error probability is less than 8.30 x lopg2,  

Suppose the dat.a rate is 100 kps. 
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With a bit,-error rate E = 0.5 x lo-’, it. will t,ake many million years to have a block erasure! 
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APPENDIX-I 

A Procedure for Coniput,ing p e (  IL, a) 

For 1 5 u 5 ml,O 5 z 5 nl - I and cr&'F(2') I& A ! I ) ( u , a )  be the number c 

codewords in C1 whose u-th symbol (or e-bit byte) is a and whose binary weight excluding 

the u-th symbol is i. Let C ' t  denote the dual code of C'l. Similarly, let B,( ' ) (u ,a)  be the 

number of codewords in C ' t  whose u-th symbol is a and whose binary wieght excluding 

the u-th symbol is i. Let af be the f-th bit of the binary representation of a ,  and let la1 

be the weight of the binary representation of a.  

Let. I,i,'i;:(n) denobe the number of binary n-tuples with weight j which are at a Ham- 

ming distance s from a given binary n-tuple with weight i. The generating function for 

n n 

j = O  s=O 

It follows from the definition of p , ( u , a )  that 

For relatively small k l ,  say less than 25, the weight distribution 

for an cr in G F ( 2 ' )  can be computed by generating 2 k l - e  codewords of C1. 

For IC1 > n1 - k l ,  it, is easier to compute p, (u ,  a )  by generating t.he weight distribution 
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lysing t,he generalized MacMillians' ide1itit.y [3, p 1471 we have 

where Pi( -, - )  is a Krawtchouk polynomial [3, p. 1291 whose generating function is 

n 

Ps(i,n)YS = (1 + Y)"- i ( l  - Y) i  ( I  - 4) 
s=o 

From this ident.ity, we have 

and 
nl - P  

Pz(h.,n1 - 4)(1  t xY)n'-e- i  ( X  + Y)Z 
i = O  

It, follows from (I-1), (I-3), (1-5) and (1-6) that. 
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where 

ni m 

Taking the t.ernis on both sides of (1-7) for which t,he degree of Y is tl or less, substituting 

E / (  1 - 6 )  for X and 1 for Y and multiplying both sides by (1 - e ) n 1 ,  we obtain the following 

formula from (1-2): 

h=O 

s=o 

If C1 is a shortened cyclic code, min{!, nl -b l }  columns of a generator matrix corresponding 

to the u-th symbol position are linearly independent, and for a symbol P,  

can be found by generating 2 n 1 - k 1 - e  codewords of t,he dual code Ck of C1. 
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APPENDIX I1 

( 1 )  A Procedure for Computing P,,,, ,..., a m ,  

Let. H be a subset of { 1,2, - e ,  ml}. Let Pi1)( H )  be the probability that a segment is 

not erased and for h c H ,  the h-th P-bit byte of the decoded segment is error free. In [l], a 

formula for computing P(’)( H )  was derived. H )  can be computed if min{kl, n1 - kl} 

is relatively samll, say less than 25. For small rnl? say less than 11, 

. 

can be found. Then it follows from t,he principle of inclusion and exclusion that 

where 
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Table 1 Inner ('odes 

Rate 

inner code 
Inner Codes (n l ,El )  of the ml dl t l  Generator polynomial 

C1( 1) shortened (55,48) 0.873 8 6  4 1 (1 + X)41(-X) 
Hamming code 

C l (2 )  shortened (56,48) 0.857 8 6  4 1 ( 1 + X ) ( 1 + X 3 + X 7 )  
Hamming code 

C1 (3)  shortened (47,40) 0.851 8 5  4 1 ( l + X ) 4 l ( X )  

C1 (4)  shortened (48,40) 0.833 8 5  4 1 ( 1 + x ) ( 1 + x 3 + x 7 )  

Hamming code 

T. namming code 

C1( 5)  shortened (30,24) 0.800 8 3  4 1 ( 1 + x)( 1 + x2 + x5) 
Hamming code 

C1 (6) shortened (61,48) 0.787 8 6  6 2 ( 1  + x)h(x)43(x) 
BCH code 

CI(7) shortened (53,40) 0.755 8 5  6 2 (1 + x ) h ( X ) 4 3 ( x )  
BC" code 

C l (8 )  shortened (59,40) 0.678 8 5  8 3 (1 + x)# l (X)43( -y )45(x )  
BCH code 

Cl(9) Goppa code (64,40) 0.625 8 5  9 4 

Cl( 10) extended (32,16) 0.500 8 2  4 3 

C1 ( 11) extended (24,12) 0.500 6 2  8 3 

BCH code 

Golay code 
~~~ ~~ 

C1(12) biorthogonal ( 8, 4) 0.500 4 1  4 1 
code 

c)1(14) biorthogonal (16, 5)  0.313 5 1  8 3 
code 

Cl(15)  biorthogonal (32, 6)  0.188 6 1  16 7 
code 

The generator polynomials are shown only for the shortened cyclic codes, and 
4l(X) is the niininium polynomial of a' with a as a root of 1 + X + X 6 .  
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